$\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0$ ના વિસ્તરણમાં ત્રીજું, ચોથું અને પાચમું પદોના સહગુણકોનો ગુણોતર $12: 8: 3 $ હોય તો આપેલ બહુપદીના વિસ્તરણમાં અચળ પદ મેળવો.
$5$
$3$
$4$
$6$
${(1 + x)^n}$ ની વિસ્તરણમાં $p^{th}$ અને ${(p + 1)^{th}}$ પદના સહગુણક અનુક્રમે $p$ અને $q$ હોય તો $p + q = $
${\left( {2x + \frac{1}{{3x}}} \right)^6}$ ના વિસ્તરણમાં અચળપદ મેળવો.
${({5^{1/2}} + {7^{1/8}})^{1024}}$ ના વિસ્તરણમાં પૂર્ણાક પદની સંખ્યા મેળવો.
જો ${\left( {x + 10} \right)^{50}} + {\left( {x - 10} \right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{50}}{x^{50}}$ , જ્યાં $x \in R$; તો $\frac{{{a_2}}}{{{a_0}}}$ ની કિમત મેળવો.
જો ${(1 + x)^{2n}}$ અને ${(1 + x)^{2n - 1}}$ ની વિસ્તરણમાં $A$ અને $B$ એ ${x^n}$ ના સહગુણક હોય તો . . . .